L2范数归一化概念和优势

  • 时间:
  • 浏览:0
  • 来源:大发快3_快3手机客户端_大发快3手机客户端

       归一化是五种数理统计中常用的数据预处置手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间意味着着将数据向量的某个范数映射为1,归一化好处有有另一个多多:

       (1) 消除数据单位的影响:其一都不会 将有单位的数据转为无单位的标准数据,如成年人的身高60 -60 cm、成年人体重60 -90Kg,身高的单位是厘米而体重的单位是千克,不同维度的数据单位不一样,造成原始数据如此直接代入机器学习中进行处置,可是有有哪些数据经过特定法律依据统一都映射到(0,1)一点区间,本来所有数据的取值范围全是同有另一个多多区间里的。

       (2) 可提宽度学习模型收敛下行速率 : 意味着着不进行归一化处置,假设宽度学习模型接受的输入向量如此有另一个多多维度x1和x2,其中X1取值为0-60 0,x2取值为0-3。本来数据在进行梯度下降计算时梯度时对应有另一个多多很扁的椭圆形,很容易在垂直等高线的方向上走血块的之字形路线,是的迭代计算量大且迭代的次数多,造成宽度学习模型收敛慢。

       L2范数归一化处置操作是对向量X的每个维度数据x1, x2, …, xn都除以||x||2得到有另一个多多新向量,即

\[{{\bf{X}}_2} = \left( {\frac{{{x_1}}}{{{{\left\| {\bf{x}} \right\|}_2}}},\frac{{{x_2}}}{{{{\left\| {\bf{x}} \right\|}_2}}}, \cdots ,\frac{{{x_n}}}{{{{\left\| {\bf{x}} \right\|}_2}}}} \right) = \left( {\frac{{{x_1}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }},\frac{{{x_2}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}, \cdots ,\frac{{{x_n}}}{{\sqrt {x_1^2 + x_2^2 + \cdots + x_n^2} }}} \right)\]

       若向量A = (2, 3, 6),易得向量X的L2范数为

\[{\left\| {\bf{A}} \right\|_2} = \sqrt {{2^2} + {3^2} + {6^2}} = \sqrt {4 + 9 + 36} = \sqrt {49} = 7\]

       可是向量A的L2范数归一化后得到向量为

\[{{\bf{A}}_2} = \left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right)\]



图1 L2范数都不会 看作是向量的长度

       L2范数有一大优势:经过L2范数归一化后,一组向量的欧式距离和它们的余弦类式度都不会 等价

       有另一个多多向量X经过L2范数归一化得到向量X2,同时本来向量Y经过L2范数归一化得到向量Y2。此时X2和Y2的欧式距离和余弦类式度是等价的,下面先给出严格的数学证明。

       假设向量X = (x1, x2, …, xn),向量Y = (y1, y2, …, yn), X2和Y2的欧式距离是

\[\begin{array}{l} D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + {{\left( {\frac{{{x_2}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_2}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2} + \cdots + {{\left( {\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^2}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right){{\left( {\frac{{\bf{X}}}{{{{\left\| {\bf{X}} \right\|}_2}}} - \frac{{\bf{Y}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^T}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{\left\| {\bf{X}} \right\|_2^2}} - \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} - \frac{{{\bf{Y}}{{\bf{X}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{\left\| {\bf{Y}} \right\|_2^2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {\frac{{{\bf{X}}{{\bf{X}}^T}}}{{{\bf{X}}{{\bf{X}}^T}}} - \frac{{2{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} + \frac{{{\bf{Y}}{{\bf{Y}}^T}}}{{{\bf{Y}}{{\bf{Y}}^T}}}} \\ \quad \quad \quad \quad \quad \;\;\; = \sqrt {2 - 2\frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}} \\ \end{array}\]

       X2和Y2的余弦类式度为

\[\begin{array}{l} Sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }}\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}{\rm{ + }} \cdots {\rm{ + }}\frac{{{x_n}}}{{{{\left\| {\bf{X}} \right\|}_2}}} \cdot \frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {{{\left( {\frac{{{x_1}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{x_{\rm{2}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {{\left( {\frac{{{x_{\rm{n}}}}}{{{{\left\| {\bf{X}} \right\|}_2}}}} \right)}^{\rm{2}}}} \cdot \sqrt {{{\left( {\frac{{{y_1}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }}{{\left( {\frac{{{y_{\rm{2}}}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}{\rm{ + }} \cdots {\rm{ + }}{{\left( {\frac{{{y_n}}}{{{{\left\| {\bf{Y}} \right\|}_2}}}} \right)}^{\rm{2}}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{\left\| {\bf{X}} \right\|_2^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{\left\| {\bf{Y}} \right\|_2^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{\frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}}}}{{\sqrt {\frac{{x_1^2 + x_2^2 + \cdots + x_n^2}}{{x_1^2 + x_2^2 + \cdots + x_n^2}}} \cdot \sqrt {\frac{{y_1^2 + y_2^2 + \cdots y_n^2}}{{y_1^2 + y_2^2 + \cdots y_n^2}}} }} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{x_1}{y_1} + {x_2}{y_2} + \cdots + {x_n}{y_n}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \quad \quad \quad \quad \quad \;\;\; = \frac{{{\bf{X}}{{\bf{Y}}^T}}}{{{{\left\| {\bf{X}} \right\|}_2}{{\left\| {\bf{Y}} \right\|}_2}}} \\ \end{array}\]        结合有另一个多多表达式易得



\[D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       即L2范数归一化处置后有另一个多多向量欧式距离等于2减去2倍余弦类式度的算术平方根。意味着着你被里边令人昏头转向的数学公式搞晕,而不看到一句话,这里还五种仅需要中学知识的更简单证明法律依据证明两者的等价性:

       假设一组二维数据,设经过L2范数归一化后向量X2 为 (p1, p2),向量Y2 为 (q1, q2)。向量X2是原点(0,0) 指向点P(p1,p2)的有向线段,向量Y2是原点(0,0)指向点Q(q1, q2)的有向线段。易得

       X2和Y2的欧式距离为线段PQ长度

       X2和Y2的余弦类式度为∠POQ的余弦值

       根据余弦定理易得

\[\cos \angle POQ = \frac{{O{P^2} + O{Q^2} - P{Q^2}}}{{2 \cdot OP \cdot OQ}}\]

       意味着着L2范数归一化向量的长度全是1,意味着着L2范数归一化向量的长度全是1,如此向量对应的点肯定全是单位圆上,可是OP=OQ=1



图2 L2范数归一化后向量对应的点全是单位圆上

       如果

\[\cos \angle POQ = \frac{{{1^2} + {1^2} - P{Q^2}}}{2} = \frac{{2 - P{Q^2}}}{2}\]

       即

\[sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \frac{{2 - D{{\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)}^2}}}{2} \Rightarrow D\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right) = \sqrt {2 - 2sim\left( {{{\bf{X}}_{\rm{2}}},{{\bf{Y}}_{\rm{2}}}} \right)} \]

       如果经L2范数归一化后,一组向量的欧式距离和它们的余弦类式度可等价。一点大优势是当你算得一组经过L2范数归一化后的向量的欧式距离后,又想计算它们的余弦类式度,都不会 根据公式在O(1)时间内直接计算得到;反过来也一样。

       另外,在一点机器学习处置包中,如此欧式距离计算如此余弦类式度计算,如Sklearn的Kmeans聚类包,一点包如此处置欧式距离计算的数据聚类。

       而在NLP领域,一点词语或文档的类式度定义为数据向量的余弦类式度,意味着着直接调用Sklearn的Kmeans聚类包则如此进行聚类处置。如果需要将词语对象的词向量意味着着文档对应的文本向量进行L2范数归一化处置。意味着着在L2范数归一化处置后的欧式距离和余弦类式度是等价的,可是此时都不会 放心大胆用Sklearn的Kmeans进行聚类处置。